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Abstract This paper presents our experience of modeling

land transportation domain in the formal framework of

Event-B. Well-specified requirements are crucial for good

software design; they depend on the understanding of the

domain. Thus, domain engineering becomes an essential

activity. The possibility to have a formal model of a

domain, consistent with the use of formal methods for

developing critical software working within it, is an

important issue. Safety-critical domains, like transporta-

tion, exhibit interesting features, such as high levels of

nondeterminism, complex interactions, stringent safety

properties, and multifaceted timing attributes. The formal

representation of these features is a challenging task. We

explore the possibility of utilizing Event-B as a domain

engineering tool. We discuss the problems we faced during

this exercise and how we tackled them. Special attention is

devoted to the issue of the validation of the model, in

particular with a technique based on the animation of

specifications. Event-B is mature enough to be an effective

tool to model domains except in some areas, temporal

properties mainly, where more work is still needed.

Keywords Domain engineering � Formal methods �
Event-B � Animation � Brama

1 Introduction

Domain engineering is a methodology to document the

facts of a particular domain. A domain model, which is the

outcome of the domain engineering phase, defines the key

concepts of a particular domain, such as major entities,

their interrelationships, static and dynamic properties,

functions, events, and behaviors. According to [15], the

main activities of the domain engineering phase are:

domain analysis, domain design, and domain simulation.

While the domain analysis identifies and captures the

domain facts, the latter two concern the translation of these

facts into system requirements.

The principle of understanding the domain before

specifying the requirements is crucial to software engi-

neering. The idea of having enough details about the

environment in which the designed product is assumed to

operate is already established in other engineering dis-

ciplines. In older engineering disciplines, such as aero-

nautics, electronics, or chemistry, engineers know the

domains of their respective fields. By contrast, in soft-

ware engineering, systems are sometimes developed by

people with an incomplete knowledge of their particular

domain. Unsurprisingly, the requirements of such systems

may be flawed although their correctness is a crucial

issue.

System engineering is a methodology to transform user

requirements into a system which best satisfies them. There

are numerous reasons to perform domain engineering prior

to system engineering. For instance, it identifies, models,

constructs, catalogs, and disseminates the system scope, it

helps stakeholders understand the system requirements

better, it can be effectively used to verify that the system

meets essential properties, and so on. Furthermore, domain

engineering in a formal framework gives practitioners an
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effective grasp on concepts such as verifiability and

validity of requirements.

We present here our preliminary experience with the

engineering of a complex domain using Event-B. Event-B

[3] is an evolution of the classical B method [2] for system-

level modeling and analysis of large reactive and distrib-

uted systems. We believe that the use of Event-B is equally

suitable for modeling environments and domains where

such systems are assumed to work.

The domain under consideration for this work is land

transportation. This domain presents a lot of interesting

features to push the use of Event-B to some of its limits.

For instance, we want to model vehicles moving inde-

pendently, to understand their interaction when there is no

explicit communication between vehicles, or to analyze

situations where traffic jams occur. We had a simplified

version of the road traffic domain in mind when specifying

and the model reflects this. Since the model does not

assume specific features of the vehicles or of their control,

it is most likely usable for other systems such as train

systems or baggage conveyors.

We developed our model in the spirit embedded in

Event-B. We liberally used refinements, both of machines

and of contexts. We give a great deal of attention to proofs.

Consequently, we now have a specification of the transport

domain where all proof-obligations have been discharged.

We also had special interest in the validation of the model,

which was achieved by our innovative use of animation of

specifications.

During this modeling, we gathered many observations

about the use of Event-B on several levels: language, tools,

methods, and so on. This paper aims at sharing the salient

points of our experience.

The presentation of the paper is organized as fol-

lows: the next section presents the main motivation for

this paper followed by a section on language, technique,

and tool we have used. Then, we present the domain

description and the specification. Sections 5 and 6

describe the lessons, which we learned while specifying

and validating our domain model, respectively. In the

end, we present the related work and finally we con-

clude our paper in Sect. 8 with some proposed future

work.

2 Motivation

Most customers express their requirements either in natural

language or in terms of scenarios. Most of the requirements

engineering methodologies are therefore nonformal or semi

formal. One of the problems with less formal techniques is

that they may be ambiguous, which makes the require-

ments engineering phase error prone.

With the help of well-defined syntax and semantics,

formal specifications can concisely express the software

requirements. However, due to their complex structures

and mathematical contents, they are difficult to read and

understand for customers. Actually, formal specifications

may sometimes not be able to intuitively reflect the con-

cepts and behaviors of systems in the real-world. The

conventional issue of validation may therefore impair the

requirements engineering phase.

An earlier involvement of customers and use of formal

techniques in software development may be a solution to

the aforementioned requirements engineering problems,

and a domain model is the right artifact to start with. A

formal domain model precisely specifies the domain facts

and with the help of techniques, such as animation, we can

demonstrate the model to customers for their timely feed-

back. Thus, we can build a ‘‘mental-bridge’’ between

complex formal specifications and their perception in the

real-world. Our rigorous validation technique, discussed

later in the paper, is based on animation and involves

customers in the software development process right from

the start; consequently, errors can be detected right on the

spot.

3 Language, technique, and tool

3.1 Event-B

Event-B is a formal language for modeling and reasoning

about large reactive and distributed systems. Event-B is

based on set theory and standard first-order predicate logic.

Event-B is provided with tool support in the form of a

platform for writing and proving specifications called

Rodin.1

An Event-B model is composed of two constructs,

machine and context. Machines, which define the dynamic

behavior of the model, contain the system variables,

invariants, variants, and events. Variables are typed, their

values may be integers, sets, relations, functions, or any

other set-theoretical construct. Invariants define the state

space of the variables and their safety properties. Variants

are related to the correction of refinements.

An event, which defines a transition from one state to

another, can be defined as a binary relation built on the

state set. This relation is composed of the guards and

actions of the event. A guard is a predicate and all the

guards together construct the domain of the corresponding

relation. An action is an assignment statement to a state

variable and is achieved by a generalized substitution.

Combined together, all the actions form the range of the

1 http://rodin-b-sharp.sourceforge.net.
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corresponding relation. The actions of a particular event

are executed simultaneously and nondeterministically.

Contexts, which define the static elements of the model,

contain carrier sets, constants, axioms, and theorems. The

last two are predicates expressed within the notation of

first-order logic and set theory.

There are several relationships between machines and

contexts: refinement, extension, and visibility. A machine

can be a refinement of one, and only one, machine. It then

contains a more detailed or concrete description of the

model. A context can extend one or more contexts. It

contains the static pieces of information of a model asso-

ciated to a refinement. A machine can see several contexts,

that is, use their names and properties; a context can be

seen by several machines.

Event-B embeds the concept of refinement, which is

then the basic element of specification development pro-

cesses. A refinement consists in introducing either new

variables or new events. When appropriate, an abstraction

invariant, often called gluing-invariant, relates the new

variables to the abstract ones. Individual events can also be

refined by strengthening their guards and adding actions to

the new variables. The same abstract event can be refined

into several concrete ones. New events can be introduced,

too. Formally, they are refinements of the SKIP event.

Most often, new events express how an abstract event is

decomposed by a sequence of more concrete events. Such a

decomposition may lead to a divergent model: a model

where the sequence of concrete events never reaches its

end and then prevents the abstract event from firing.

Variants may be explicitly introduced to guarantee the

absence of divergence. They are natural number expres-

sions on the state of the model. When declared as ‘‘con-

vergent,’’ concrete events must strictly decrease the

variant; when declared as ‘‘anticipated,’’ they must not

increase the variant.

The semantics of refinement are given by proof-obli-

gations. Proving a refinement correct amounts to proving

that concrete events maintain the invariant of the abstract

model, maintain the abstraction invariant, and, when

appropriate, decrease variants monotonically.

In practice, it is often useful to think in terms of reifi-

cation of variables and of decomposition of an event into

several smaller ones. This point of view helped us to

organize the development steps and to get a better rationale

for each refinement.

3.2 Animation

The main goal behind animation is to demonstrate the

requirements narrated in the specification document. This

demonstration facilitates the understanding and correction

of complex specifications. It is an approach which lets the

specifier to analyze the specification against possible sets

of behavioral scenarios. These behavioral scenarios, which

in turn are sequences of events, constitute the behavior of

the specification. For instance, different scenarios can

happen when a vehicle crosses an intersection, depending

on whether other vehicles are already on or approaching

the intersection.

To use the animation for validation purposes, all typical

behavioral scenarios of the specification should be ana-

lyzed. The behavioral scenarios, which define the func-

tional behaviors of the system through a sequential

execution of events, are animated by feeding some initial

values to animators at startup. These startup values may not

be required by animators, which provide these values to

specifications themselves. During the animation, we can

observe whether the scenario runs as expected, without

violating invariants, guards, or postconditions. The ani-

mation process is continued until all the scenarios are

exhausted or some error perturbs the intended course of

events.

In an ideal world, all typical scenarios should be ani-

mated. However, depending upon cost and timing con-

straints, conducting animation on selective scenarios,

which are considered critical for the validation of the

specification, may be an effective approach.

3.3 Brama

Brama [42] is an animator for Event-B specifications. It is

an Eclipse based plugin for the Event-B platform Rodin.

Brama can be used in two complementary modes. Either

Brama can be manually controlled from within the Rodin

interface or it can be connected to a Flash2 graphical

interface through a communication server; it then acts as

the engine which controls the graphical effects.

Figure 1 shows the standard Rodin interface of Brama.

It provides us with a simple, but effective, visualization of

the behavior through two windows which synthesize the

current state of the animation. On the left-hand side, we can

see all the events and which of them are enabled, that is,

their guards are true. On the right-hand side, we can read

the values of the state variables. An enabled event is fired

by simply clicking on it. As the tabs indicate in the lower

part of the window, it is possible to visualize the current

state of the animation on different refinements. The buttons

allow for adapting the visualization and editing values,

which act as parameters for the events.

A typical animation session begins by setting the values

of the constants in the different contexts seen (either

directly or transitively) by the animated machine. Then, the

user must fire the INITIALISATION event, which is, at

2 Flash is a registered trademark of Adobe Systems Inc.
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that time, the only enabled event. After this, the user plays

the animation by firing the events until there are no more

enabled events, or the system enters a steady loop, or an

error occurs (broken invariant or a substitution that Brama

does not know how to compute).

A graphical interface can be connected to Brama in the

form of a Flash application, and events can be directly fired

from there. A mechanism of observers is provided.

Expressions and predicates can be individually monitored

and their value is communicated to the Flash program each

time it changes. Last, a scheduler mechanism is provided

for the automatic firing of events.

4 Domain description

4.1 Domain overview

Our work takes place within the framework of the projects

TACOS3 and CRISTAL.4 These projects aim at studying

new transportation systems using autonomous and self-

service vehicles known as CyCabs [5]. CyCabs are small

computer-controlled electric cars. They can move in three

modes: driven by a human, driven by their inboard com-

puter, or within a platoon. In this last mode, several

CyCabs assemble as a train without material connections

between the cars. Except for the leader, which can be

manually driven, platoon members are controlled by sys-

tems, which aim at keeping cars as close as possible to each

other and at following as closely as possible the trajectory

of the leader. CyCabs can be used as the basis of a car-

sharing system in urban areas. There are several scenarios

on the operation of such systems. All share two important

features. CyCabs will move in the public space, possibly on

dedicated lanes, and will have strong interactions with

other road users. Driverless moving modes and platooning

are necessary for providing customers with new services,

such as transient buses, relocation of CyCabs between

stations in order to adjust vehicles, and parking availability

during the course of the day. These features imply that

systems and vehicles need to be certified.

The certification of a vehicle or a system is a process

where it is verified that the vehicle meets minimal

requirements, which allow it to operate within a certain

domain. These requirements are derived from the expres-

sion and formalization of desirable properties that the

whole transport system must incorporate. The issue for

software-controlled vehicles is to have an expression of

these properties amenable to the use of formal verification.

The model of the land transport domain is aimed at pro-

viding us with the formal expression of these properties.

The model has been defined with the Event-B specifi-

cation language, following the refinement principles

advocated by the B method. We used the ability of Event-B

to combine refinement and incremental enrichment of the

Fig. 1 The Brama animator for

Rodin

3 http://tacos.loria.fr.
4 http://www.projet-cristal.org.
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specification. First, a general definition of transportation

network and the act of moving was given. Then, we

introduced properties, one at a time.

Transportation is defined as the movement of people and

goods from one location, called a hub, to another with the

use of vehicles. We suppose the existence of a network

composed of stations (hubs where vehicles can stop to be

loaded and unloaded), junctions (hubs where roads join),

and paths, which connect stations and junctions together.

Movements are constrained by the topology of the net-

work: a vehicle must follow a sequence of adjacent paths to

travel from its origin to its destination.

The general properties we want to express concerning

transportation are safety and travel time. The first is the

idea that collision between vehicles must be avoided. The

second is related to the fact that travel time is at the root of

nearly all decisions made about transportation, either

individually or socially.

4.2 Event-B specification

Our current domain model contains one abstract machine

and seven refinements. In parallel with the machines, two

contexts are being refined. The first is the context Net,

which models the static properties of the network (its

topology, quantities associated to its elements, etc.). The

second is the context StartState, which helps to set

and prove the INITIALISATION event of the machines.

It is easier to read and understand the specification when

the refinements are grouped into what we call ‘‘observation

levels.’’ A leap from one level to the next occurs when we

decompose an abstract event into several ones, corre-

sponding to a finer grain analysis. For instance, the

decomposition of the most abstract travel event into a

sequence of path traversing and hub crossing events cor-

responds to a change of observation level. Figure 2 sum-

marizes the four levels:

1. The first level of observation contains the definition of

a travel event and is specified by machines

Movement0, Movement1 and Movement2.

2. The second level of observation decomposes travel

events into crossHub and traversePath events.

This is specified by machine Movement3.

3. The third level of observation decomposes crossHub

events into enterHub, leaveHub, and wait

events. This is specified by machines Movement4

and Movement5.

4. The fourth level of observation decomposes tra-

versePath events into waitToEnterOnPath,

leaveHub, moveOnPath, and waitToMoveOn-

Path events. This is specified in Movement6 and

Movement7.

New observation levels were introduced when a prop-

erty could not be expressed within the existing levels.

The first level of observation is about setting up the

main domain vocabulary and defining the basic properties

of the domain. In the context Net and in its refinements,

we define the basic vocabulary of the transportation net-

work, such as nets, hubs, stations, junctions, connections,

paths, and routes. In machine Movement0, we abstractly

define the travel event as relocation of a vehicle from

one place to another. The further refinements at this level

introduce a finer topology of the network (junctions, sta-

tions, paths, and routes) and express the property that travel

only occurs between connected stations.

The second level of observation is about the property

that travel is constrained by the topology of the network.

The abstract event is then decomposed into three events

(startTravel, crossHub and, traversePath),

which must occur in a unique sequence to realize a trav-

eling event.

The third level of observation is motivated by the

introduction of the property of noncollision at hubs. Such

Fig. 2 Levels of observations
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collisions are abstractly defined as the presence of too

many vehicles in a hub at the same time. This leads us to

decompose the crossHub event as a sequence of wait,

enterHub, and leaveHub events. The choice between

wait and enterHub is controlled by the hubLoad (the

number of vehicles present on the hub) and hubCa-

pacity (the maximal number of vehicles that can be

safely present on the hub). The second refinement at this

level corresponds to the introduction of the question of

travel time, which does not require a further observation

leap.

The fourth level of observation is associated with the

introduction of the property of noncollision on paths (rear-

end type of collision). The event traversePath is

decomposed into a sequence of waitToEnterOnPath,

leaveHub, moveOnPath, and waitToMoveOnPath

events. This models the abstract kinematics of the vehicles.

Following are two interesting properties of the domain

which we model:

Collision Avoidance In the real-world, collisions are

situations that must be avoided. We chose to model them as

a breach of an invariant. A well-behaved domain is then

one where no event breaks the invariant. Since events’

semantics is based on weakest preconditions, the events’

guards are then a good description of the conditions that a

domain must meet to be well-behaved.

In real life, collisions can be classified into three

types: front, rear, and side. Front collisions are implicitly

prevented by the topology of the network: paths are

oriented and model one-way lanes. Side collisions occur

at intersections, rear collisions on paths. This prompted

us to use two disjoint invariants. The events introduced

at the second level made this separation easy to

implement.

While a real collision happens when two vehicles are in

the same place at the same time, we chose to model it more

abstractly on the hubs. Our definition relies on the idea that

a hub can only carry a fixed number of vehicles at a time.

So, the invariant to maintain is easily written as:

where hubLoad is the actual number of vehicles in a hub,

and hubCapacity is the maximum number of vehicles

allowed in the hub. hubLoad is a function modified by the

events, and hubCapacity is a constant property for each

hub. Interestingly, this definition does not require the

introduction of time. It abstracts from the kinematics of the

vehicles in the hub.

The specification of the absence of rear collision on

paths is directly inspired from the natural definition. The

corresponding invariant is:

where vehiclePath signifies the current path of the

vehicle, and vehiclePosition is a refinement of the

location of a vehicle on the path. This invariant assumes

two facts: vehiclePosition is a partial function

whose domain is the set of vehicles actually engaged on a

path, and different paths never share locations. This last

situation would be modeled as a junction.

In a further refinement, positions on paths are modeled

as an interval between integers, starting at 0 and ending at

pathLen. This allowed us to introduce the natural con-

cept of safety distance (criticalDistance) that is

used in the guards of the moving events. An instance of

such a guard is:

We use integers for positions instead of real numbers

because we want our model to be fully provable within

current Event-B tools. Presently, the provers available

within Rodin are restricted to integers. The issue of dis-

cretization is a complex one, which we have addressed in

another work [46].

Time: Time is a very important parameter in the domain

of transportation and our model needs to incorporate it.

This parameter is known to be tricky to define and to use.

In fact, our domain suggests the existence of several flavors

of time. One flavor is travel time, where a clock is only

observed at the beginning and at the end of a travel.

Another flavor is continuous time, which is used in mod-

eling the kinematics where it controls the movement of the

vehicles.

Since Event-B lacks an explicit concept of time, we used

the timing patterns for Event-B proposed by Cansell et al.

[13]. In this technique, we use natural numbers to model

time and a special ticTac event to make a global clock

(time) advance.

The modeling of time was motivated by the introduction

of the wait event on the third level. We proceeded in two

steps. The first was the introduction of the notion of a clock

and the notion of travel time as a difference between two

readings of the clock. Although technically realized as a
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refinement of Movement4, this introduction is logically

situated at the first observation level. The second step was

the actual computation of the advance of the clock.

To do this, we modeled the technique used in simulating

queue systems. We introduced a timed event queue (ac-

tivationTime), which contains the time at which a

moving vehicle must perform an event. The following

invariants are introduced:

A new guard is then introduced in the events concerned

by time:

The action part of the event modifies the event queue

accordingly:

where timeInc is an increment dependent of the event

considered. It can be a constant, an arbitrary value, or a

computation on the event queue.

The timing pattern, as shown by Fig. 3, is specified by

the event ticTac.

A vehicle is introduced into the event queue by the

startTravel event. It is removed from the queue when

it reaches its destination.

Elements of an earlier version of this specification are

discussed in [33]. A more recent verified version of our

specification is available at the following web address:

http://dedale.loria.fr/?q=re-spec.

5 Lessons learned: specification

5.1 Assumptions versus requirements

One of the main reasons to use mathematical formalisms

and tools is to explicitly define the elements of interest. At

the time when domain modeling is of importance, the focus

is on ‘‘requirements’’ and ‘‘assumptions.’’ Traditionally,

the former denotes what a particular system is expected to

do, and the latter, what the system can expect from its

operating environment [47].

In B, which was designed as a language to specify and

develop systems, functional requirements are expressed by

invariants. In Event-B, where we are modeling an envi-

ronment which controls the system, we cannot locate the

properties of interest as easily. Part of the problem is that it

is possible in Event-B models to mix system and envi-

ronment properties. While always expressed as predicates

on the state, properties can be found in three places: in the

invariants of the machines, in the axioms of the contexts, or

in the guards of the events. It may be then interesting to

relate the type of assumptions with their location in the text

of the specification.

A domain model is composed of different assertions

about the particular domain. So these assertions are used as

assumptions by systems operating within the domain. A

system designer uses these written assumptions, but also

unwritten, implicit, assumptions. Of course, the goal of a

domain model is to make explicit as many assumptions as

possible, which are essential for the correct operation of a

system. In our Event-B models, these could be classified

into structural facts, behavioral laws, and enforceable

properties.

Contexts in Event-B are used to describe the constants in

a model. So, they contain all the structural facts. For

instance, it is in contexts that a transportation network is

described as a set of nodes (hubs) and vertices (paths), that

hubs are partitioned into stations and junctions, or that

vehicles are constrained to bounded speeds, accelerations,

and decelerations. Axioms in the contexts allow us to

define the properties of the structure. For instance, routes

are defined as sequences of contiguous paths, with each

hub visited only once, the first path starting from a station

and the last path leading to a station.

Behavioral laws are described by events. More pre-

cisely, as assumptions, they are located in the guards of the

events. For instance, the law which states that travel occurs

only between stations or the one which states a travel is

associated to a route are both found in the guards of the

travel event, respectively, in Movement1 and Move-

ment2 refinements.

We refer to enforceable properties as those properties,

which are necessary to have a well-behaved model. Col-

lision avoidance is high among enforceable properties in

the transport domain, for instance. Such properties fall in

between requirements and assumptions: a system working

into the domain can assume the property, but must guar-

antee to keep it unbroken. Quite obviously, such properties

are expressed by invariants.

Whether a particular domain assumption should be

expressed as a behavioral law or as an enforceable property is

Fig. 3 Event ticTac
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a difficult question, which has no clear-cut answer. If we

consider the issue of collisions, we used an invariant, but we

could have introduced a special collide event. Formally,

there is a strong relationship between the two descriptions:

the guard of the hypotheticalcollide is the negation of the

invariant. The choice between the two expressions depends

on the kind of system one has to develop. For instance,

developers of a road traffic monitoring system will likely

prefer to have collide events, since their system will have

to deal with such situations. Developers of a traffic light

control system will likely prefer the invariant expression as it

is one of the goals of their system.

Domain models are reference documents. So, they will

often be read by people who need to check some intuitive

assumption or to collect assumptions relevant to a certain

part of the system. It is more difficult to extract assump-

tions from a model than to introduce them. This is con-

nected to the traditional issue of readability of formal texts.

Even assuming readers have an equal command on the

formalism as writers, the former need to infer the semantics

that the latter has only to write down.

Structural facts and enforceable properties are expressed

by axioms and invariants, respectively, so they are well

localized, as a unique syntactic expression, in the text of

the specification. The only confusing problem comes from

the typing formulae, which are part of axioms and theo-

rems: most are purely technical but some convey infor-

mation that can be seen as assumptions. For instance, the

structural property that a connection belongs to only one

transport network can be written either as

or as

The assumption is less conspicuous in the second

expression.

The extraction of a behavioral law is the real difficulty.

The problem comes from the scattering of the expression of

the law into the guards of several events. For instance, the

assumption that a vehicle moves on a path only when it has

some room to do so is scattered into four events.

One way to ease the extraction is to restrict the model

development to the introduction of only one behavioral law

per refinement and to document the rationale for the

refinement. Since Event-B supports small refinement steps,

there is not much cost in refining slowly.

The very positive side of using Event-B for modeling

assumption lies in the fact that consistency of assumptions

can be assessed. When an assumption is expressed by an

invariant, discharging the standard proof-obligations of

Event-B ensures that the assumption is consistent with the

model. Failure to discharge the proof-obligation is not a

formal proof of inconsistency, but can conservatively be

interpreted as such. Assumptions expressed as axioms are

in the opposite situation: we can show inconsistency but

cannot prove consistency. In that case, the proof-obliga-

tions are restricted to axiom’s well-formedness and well-

typing. This point is further elaborated in the Sect. 5.7 as an

observation on the tool.

5.2 Refinements versus observation levels

Refinements and observation levels are distinct concepts.

Refinements are the cornerstones of the B method. They

serve two purposes: methodologically, they allow specifi-

ers to concretize the specification, and technically, they

induce proof-obligations which guarantee the correctness

of the development. They give the development a flat

structure, which may impair its readability.

Observation levels are a way to provide a specification with

a superstructure which eases its understanding. They reflect

either the ‘‘natural’’ structure of the objects or the structure of

the behavior. For instance, the second observation level in the

model reflects the static topology of a network, while the third

level is more about the protocol to cross a hub.

The major advantage of thinking in terms of observation

levels becomes apparent when we introduce a new prop-

erty. This structure provides us with a strong guideline. We

experienced it with the introduction of time. The vocabu-

lary and abstract constraints (time is ever increasing, for

instance) were defined at the first level, since this con-

cerned only travels. Next, we jumped directly to the third

level to define the computation because durations could be

associated to events at this level.

5.3 Parallel refinements

While the view of a development as a linear sequence of

refinements makes sense in B where a system is developed,

it is far less pertinent in Event-B where an environment is

Fig. 4 Introduction of energy consumption: what we want
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described. Properties are often independent, at least as far

as their definition is concerned. We experienced this with

time and collision avoidance.

The problem with the linear sequence is that when we

introduce a new property, we need to do this into a com-

plex piece of text. For instance, if we wanted to introduce a

notion of energy consumption, we would like to start the

new feature analysis as shown by Fig. 4. From this, we

could refine the notion along the observation levels and

merge the resulting model with the current specification.

Instead, Event-B’s flat refinement structure would force

us to write the travel event as illustrated by Fig. 5 and to

introduce in all other events a dummy action of the form:

This action simply states that meter is susceptible to be

modified by future refinements. Even if the addition of such

an action does not pose any problem, it tends to clutter the

text and to cause distraction.

In domain engineering, the commonality/variability

analysis and decomposition/recomposition of models have

always been considered as integral features. The example

shows why such features would be welcomed in develop-

ing a domain model. Currently, Rodin lacks tools to

compose models. However, for its recent versions, several

plugins have been proposed for composing Event-B models

together: Feature Composition Plugin [19], Parallel Com-

position Plugin [40], and Shared Event Composition Plugin

[43]. They are still prototypes and at early stages of

development. We need to investigate them in more detail

before we can use recomposition in our models.

5.4 Protocols/ordering constraints in events

Once events are decomposed into smaller events, it is

crucial that these events be fired in a strict order so that a

consistent behavior is modeled. For instance, the decom-

position of the travel event is thought of as:

travel � ðstartTravel; ðcrossHub; traversePathÞþÞ

Unfortunately, Event-B does not provide us with traits to

express this protocol. Instead, we must make explicit defi-

nition of the protocol with the help of control variables and

guards in the events. This is complex and a source of errors.

This situation happens each time we introduce a new

observation level. So, going from second to third level, we

decompose as follows:

crossHub � ðwait�; enterHub; leaveHubÞ

To go from third to fourth level, we decompose as follows:

traversePath � ðwaitToEnterOnPath�; leaveHub;

ðwaitToMoveOnPathj moveOnPathÞ�Þ

We use two basic techniques for controlling the protocols.

The first is the introduction of control sets. We used these

for the decomposition of travel. The control variable is the

set of all hubs and paths the vehicle will have to pass

through. The next hub to cross or the next path to traverse

is easily defined as the member of the control set, which is

related to vehicle’s position. This technique has the

advantage that a variant is quite easy to define, but has the

drawback of introducing complex computation of the sets.

The second technique is the introduction of a notion of

state markers, either through an explicit variable or a

property, such as belonging to the domain of a relation.

This can be seen as a form of coding a state machine. The

advantage of using state markers is their easy definition,

but their drawback is the difficulty to set variants and

generally to connect state markers to invariants.

Although without formal substance, the previous regu-

lar-expressions like formulae were of great help to set up

the explicit control. It would be a welcome extension of

Event-B or of its supporting tools if that kind of expression

could be stated and be checked against the behavior of the

events. Diagrammatic notations, such as the structure dia-

grams of Jackson System Development (JSD) [23] or for-

malism like Communicating Sequential Processes (CSP)

[22] could be used.

5.5 Time modeling

Unsurprisingly, the modeling of time raised many ques-

tions. We used the timing patterns for Event-B proposed by

Cansell et al. [13] in our models. They assume a discrete

time, and in our model, travel time is of that kind. The

computation of the clock with the timed event queue is

cumbersome because it is explicit, but does not lead to

specification difficulties. Indeed, a generic pattern emerged

to write the refinement:

Fig. 5 Introduction of energy consumption: what we have
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– Identify an event concerned by time;

– Introduce the standard guard (same for all events);

– Introduce a substitution of the timed event queue; the

actual value to substitute is of course dependent on the

event.

Kinematics introduces a flavor of continuous time. This

raises two questions: (1) is it legitimate to try to model this

with the purely discrete means Event-B provides us? and

(2) how will it merge with the previous definition of time?

The answer to the first question is ‘‘Yes’’ if the model is to

be the basis for a software implementation. By essence,

computers are discrete machines. A fundamental parameter

of any control software for running machines is the fre-

quency of their control loop. So, the actual time will be

discrete.

Technically, the refinement of traversePath to

introduce the kinematics behavior did not pose many

problems. The basic idea was to use the pattern presented

earlier with a kind of ‘‘fixed tick’’ in the third step. The

kinematic functions are modeled as axioms in the context

specific to vehicles.

5.6 Safety and liveness properties

Safety: A safety property asserts that nothing bad happens

[26]. Safety properties can be specified either as something

that should never happen or as some property that should

always hold. Consider the safety property of collision

avoidance. It is specified by the invariant of the model. All

the invariant preservation proofs have been discharged. We

are then assured that no event precipitates a collision.

It should be noted, however, that the previous condi-

tion is necessary, but not sufficient to ensure safety in

general. Although this does not yet happen in the current

state of the specification, it will when kinematics will be

fully specified. A moving vehicle should never be allowed

to make a move which leads to a collision (i.e., no event

should break the invariant), but it must also always be

able to react (i.e., there should always be an enabled

event). This last condition is similar to the liveness

property discussed later.

Deadlock: A deadlock, in computation, is a state when

some processes in a system are halted waiting for some-

thing to happen which can only be triggered by one of the

halted processes. In transportation, a similar phenomenon

exists and is referred to as gridlock, which describes an

inability to move on a transport network (i.e., traffic jams).

Both deadlock and gridlock are something that imple-

menters must avoid. It is then important to characterize

them at the level of the specification.

While deadlocks can be thought of as a situation in

Event-B, where no event is enabled, i.e., guards of all

events are false, deadlock freeness would mean that some

vehicles can always move i.e., at least one event is enabled

all the time, such as stated with the following invariant:

GðE1Þ _ GðE2Þ _ � � � _ GðEnÞ

where G(Ei) is the guard of the event Ei.

In the transportation domain, we can always experience

the situation of traffic jams, which may prevent all vehicles

from moving. Since gridlock is a fact of life, we choose to

allow them in the specification. At a theoretical level, with

the introduction of wait, we can say that a vehicle can

wait in such situations, and at least this event can always be

fired, but this is not an elegant solution. At the specification

level, Rodin does not allow any deadlock freeness proof

and it either needs to be done manually or with the help of

a model checker, such as ProB [29].

As an impact of the decision to allow gridlock in the

model, later in the specification, the introduction of time

forced the gridlock situations to ‘‘pop up’’ during some

proof-obligations. A solution was to introduce new events

to model these gridlock situations. We have identified three

such situations at present:

1. When a vehicle needs to enter a station which is

already full of parked cars. No vehicle will leave the

hub and the moving vehicle is then ‘‘locked out’’;

2. When a vehicle needs to enter a path which is full of

other (stationary) vehicles. This vehicle is then

‘‘locked in’’;

3. The third case is similar to the second case except the

vehicle has already begun traversing the path. It is then

‘‘locked on path’’.

Modeling gridlock with special events has at least one

advantage. The conditions of the blockage are clearly

identified. Implementers who want a particular system to

be jam free can derive their invariants from these

conditions.

Have we identified all the gridlock situations? This

question can be answered either way. We can answer

‘‘Yes’’ if we consider only the formal model. The locked

events are direct consequences of the time model that is

used in the domain specification. They are necessary to

discharge the proofs related to the property that time is ever

increasing. We can answer ‘‘No’’ if we consider the reality

of which the specification is an abstract model. There could

be other gridlock situations associated with other notions of

‘‘progress’’ of the state of the model, which are not yet

described. The point is that the proof-obligations of Event-

B catch the gridlocks implied by the model.

Liveness: The liveness property asserts that something

good will happen ‘‘eventually’’ [26]. We have noted pre-

viously that liveness can be a necessary condition to have

systems which guarantee a given safety property. This

200 Requirements Eng (2011) 16:191–207

123



www.manaraa.com

notion can also be used for expressing noncritical, but

desirable properties. In our case, a desirable property is that

a vehicle eventually reaches its destination and terminates

its travel. This property cannot be formally expressed

within the Event-B framework because liveness properties

involve the temporal concept ‘‘eventually;’’ until now there

is no standard way to define temporal constraints in Event-

B specifications. Even so, we know that, due to traffic jams,

the above liveness property is certainly not guaranteed, it

would be very useful to be able to express it formally.

However, as proposed by [45], in order to prove the

liveness of our model, we can prove that our system is

nondivergent and enabledness preserving. By nondiver-

gent, we mean that newly introduced events do not take

control forever, and by enabledness preserving, we mean

that if an event is enabled at abstract level, it is enabled at

concrete level as well.

Nondivergence is usually proven with the help of vari-

ants. We introduced the following variant at the second

level of observation:

where hubstoCross (resp. connectionsToTr-

averse) is the set of hubs (resp. paths) that the traveling

vehicles have still to cross (resp. traverse) to reach their

destinations. One of the sets loses one of its elements each

time a vehicle progresses on its travel. The proof that the

newly introduced events crossHub and traverse-

Path decrease the variant is a guarantee that they do not

prevent the travel event to fire.

This notion of variant is useful to prove nondivergence

until the event wait is introduced at the third observation

level. Since a vehicle can wait for indefinite periods of time

for its turn to enter a hub, our variant cannot assure us that

this event cannot take control forever. This is a fact of life:

the land transportation domain is divergent.

We can prove enabledness preservation of the model by

the standard consistency and refinement checking proofs,

which need to prove that the guards of one or more events

in the refinement are enabled under the assumption that the

guards of one or more events in the abstraction are also

enabled.

This discussion on safety and liveness properties indi-

cates that they are complex and tangled issues. It also

shows that as far as domain models are concerned, there

should not be only one rule like, for example, no model

shall deadlock or models shall always be live. The point is

that Event-B does not provide us with the mean to express

cleanly those kind of properties. We consider this as an

important shortcoming.

5.7 Language and tools

Our unconventional use of Event-B and, consequently, of

Rodin raised a few issues with the modeling language and

the tool support. While the observations discussed later

sound negative, we must emphasize the overall quality of

the language and the tools: the major difficulties we

encountered were caused by the complexity of the domain

and by our own errors.

Considering the tool support, we have two observations:

1. Rodin failed too often to automatically discharge

obvious proofs, even those so obvious that it took a

simple click by the user to direct their completion.

This becomes tedious and very distracting. Particu-

larly, annoying are the numerous subgoals akin to

type checking that are generated by the deduction

rules and discharged with a click. They tend to

disrupt the concentration required by tricky proofs;

we expect tools to help rather than distract on this

aspect.

2. Rodin does not warn when axioms are inconsistent.

The detection of contradicting axioms is hard. Now,

we rely only on heuristic rules. We suspect a

contradiction when we notice that proofs become

mysteriously easy to discharge. Then, we introduce an

axiom or a theorem such as TRUE = FALSE. Success

in the proof signs a contradiction, failure provides us

only with reasonable assurance. We know that proving

the noncontradiction of axioms is nondecidable.

However, the indication by Rodin that it has detected

an inconsistency would be welcomed.

Our work prompted three remarks on the language:

1. Refinement is the only structuring mechanism in

Event-B. As discussed previously (Sect. 5.2), grouping

machines in other ways would be appreciated. This

would not necessarily require a modification of the

language, but could be achieved by the tools.

2. The internal structure of Event-B machines and

contexts is too flat. Again, a possibility to structure

axioms or events into categories would improve

greatly the readability. For instance, we classified our

axioms into three categories (technical, typing, and

property) and found this practice very helpful to

maintain clean and readable specification.

3. The feature of Event-B which we missed a lot was the

notion of sequences. Currently, we specify them by

using the standard definition of sequences. We consider

this only as a patch: it works, but it brings clutter to parts

of specifications that are already sufficiently complex.

Requirements Eng (2011) 16:191–207 201

123



www.manaraa.com

6 Lessons learned: animation

6.1 Animation of specifications

An important part of the transport domain model amounts

to specifying complex behaviors. Some are explicitly

defined (e.g., the succession of crossHub and tra-

versePath during a travel), some implicitly (e.g., the

correct interaction of vehicles at intersections), and other

unknowingly (e.g., only one vehicle at a time was allowed

to travel in an early, erroneous in that case, specification).

As a modeler, we are confronted with three questions: does

our model specify an actual behavior observed in the

domain? Does our model specify the behavior we actually

want to describe? How do we specify a certain behavior?

These questions correspond to well-known software

engineering concerns related to three different develop-

ment activities. The first question is about modeling

‘‘good’’ representations of the actual world. The second

question concerns the validation of the formal expression

against some already abstracted model. The third question

is of a technical nature, related to the expressive power of

the language.

We have discovered that animation is a very valuable

technique to help in answering these three questions. While

the observation of the animation (which does not need to

have fancy graphics) gives a lot of information about the

model and helps uncover errors, we also discovered that

some activities around animation are also crucial. Activi-

ties, such as setting up values for the animation (e.g., fixing

a network’s actual topology) and inventing scenarios to act

or observe, provided us with a lot of insight about the

specification text, about the model, and even about the

traits of the reality we wanted to model. Of course, ani-

mation alone is not sufficient to decide if a model is

‘‘good’’ but, by allowing concrete observations of the

model behavior, it facilitates the comparison between

model and reality.

It should be noted that our choice of tool, Brama, is

contingent. At that time, it was the only one able to animate

Event-B specifications. More recent tools such as AnimB5

and ProB [29] are now available and fully compatible with

Event-B. While our proposed heuristics (discussed in the

next subsection) should surely be adapted to these specific

tools, we suspect that the general philosophy of animation

we have adopted is still valid.

6.2 Animation for specification validation

Soon we discovered that not all specifications could be

animated for validation purposes. Not only do tools have

their limitations, such as nonsupported features of the

language for instance, but specification techniques, such as

nonconstructive definitions, often prevent efficient com-

putation of the values. To be useful, an animation needs to

be reasonably fast.

We then designed and described, as rigorously as pos-

sible, a set of heuristics, which transform a nonanimatable

specification into one that the animator Brama could ani-

mate. One can wonder why we do begin by producing an

animatable specification. The reason is that our transfor-

mation heuristics ‘‘downgrade’’ the initial specification on

two important counts: the specification becomes far less

readable and, more importantly, may become unprovable.

The transformation process tends to alter and suppress

elements that are essential for proofs.

Naturally, in the presence of some undischarged proof-

obligations, the relation between the behaviors seen during

the animation and the ones described in the initial speci-

fication becomes a crucial issue. To solve this, we propose

a stepwise framework to include the animation in a rigor-

ous validation process. Our proposed validation method-

ology, for each observation level, is summed up by Fig. 6

and as follows:

1. Start from a fully verified specification. This step is

essential.

2. For each nonanimatable trait:

(a) Pick an appropriate heuristic

(b) Check that the applicability conditions hold

Fig. 6 The stepwise validation framework

5 http://www.animb.org.
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(c) Prove that the argument used in the justification

part of the heuristic is valid

3. If an anomalous behavior is encountered, modify the

initial specification, prove it to be correct, and restart

from step one.

In our proposed framework, a verified specification must

be the starting point of the validation process. If there are

verification errors in the specification, they must be cor-

rected before proceeding toward the transformation step.

Our belief is that there is no point in engaging ourselves in

a costly series of validations on a piece of code which is

nonverifiable. Furthermore, failures to discharge proof-

obligations are rather frequent and reveal problems in the

specification. Although most problems are minor and easily

corrected by small modification in some expressions, the

Event-B text is generally not exactly the same at the end of

the verification than at its beginning. The model then is

different. Last, the proof of correctness for the application

of some heuristics depends on the fact that they are applied

to a verified specification.

As soon as all proof-obligations have been discharged,

we proceed further toward the animation step. During this

procedure, whenever we discover any element in the

specification which is nonanimatable, we inspect the

problem and try to match the case with the list of our

proposed transformational heuristics. This inspection and

matching practice includes checking if the application

condition defined by the heuristic holds and also that the

use of this heuristic can be justified. This justification can

either be provided in the form of a formal proof within

Event-B (discharge of a proof-obligation) or by a rigorous

argument which generally uses the fact that the process

starts from a verified model.

The fact that transformations have been applied means

now that the specification is animatable. Animation dem-

onstrates the behavior of the specification. If the demon-

strated behavior is as per expectations, then we have the

verified and the validated specification in our hands.

However, if this is not the case and a closer look at the

specification has revealed deviations from the intended

behavior, then we need to go back to the initial specifica-

tion and would have to correct the anomalous behavior.

This triggers the loop, i.e., reproving, reapplication of the

heuristics, and reanimation until the specification conforms

to actual expectations.

Of course, for this process to be valid, we need to ensure

that the initial and transformed specifications are equiva-

lent in some way. Since the heuristics are not ‘‘semantic

preserving’’ in the strong sense, we have to define an ad-

hoc semantics and preservation properties. Intuitively, we

need to guarantee that: ‘‘anything that is observed during

the animation of the transformed text would have been

observed on the animation of the initial text.’’ Another way

to state it is that the behavior of the transformed specifi-

cation is a subset of the behavior of the initial specification.

This leads to our giving a formal definition of behaviors as

sequences of states and events and of the relationship

between behaviors of two specifications. A formal notion

of ‘‘shared behavior’’ provides us with the basis for the

preservation property. Those definitions are easily related

to the actual observations on animations: enabled events

(enabledness property) and state values (reachability

property and closure property).

The current heuristics have been analyzed. Some heu-

ristics can be proven to preserve behavior in all situations,

either because they are strongly semantic preserving or

because, like invariant removal, they equate the shared

behaviors with the initial behaviors. Others lead to the

generation of proof-obligations which, when discharged,

ensure the preservation property.

We do not discuss transformational heuristics here. For

details, see this research report [31], which discusses the

symptoms, transformations, cautions, justifications, and

proofs of all these transformational heuristics. Two com-

plementary case studies, employing our proposed approach

of stepwise validation, can be found in [30, 32].

6.3 Animation for features exploration

Primarily, we have used animation as a quality assurance

activity, i.e., to validate and gain confidence in our speci-

fications. It is closely related to prototyping. The benefit of

this approach is that we can convert the specification into a

prototype without translating it into a program. It then acts

as a quick and low cost validation technique.

The use of animation after the proofs of both the model

and application of heuristics is essential to get a trustwor-

thy validation. However, we have discovered that anima-

tion is also a useful tool when used before the proofs. In

such cases, animation is used to explore new features.

The introduction of a feature raises three issues: (1) the

definition of the feature, (2) its formal specification, and (3)

its consistency with the current model. Regarding the first

issue, animation provides us with a good intuitive under-

standing of how the model ‘‘works.’’ This helps to realize

how the feature can be introduced and how it will fit into

the model. Expressing a feature into guards, actions, axi-

oms, or invariants is a difficult exercise, even for simple

behaviors. Small variations in the formal text may lead to

‘‘incorrect’’ behaviors. Using animation to check that the

formal text specifies the intended feature before embarking

on the verification is cost-effective. Regarding the third

issue, animators like Brama, which verify continuously that

invariants hold, are very effective in catching incomplete
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or inconsistent specification of the feature. Like a good

debugger which helps programmers to fix a program rap-

idly before going to extensive testing, animation helped us

to ‘‘fix’’ the specification before going through the formal

proofs.

7 Related work

7.1 Event-B versus RAISE

This research is closely related with Dines Bjørner’s work

[8–10]. In his work, he uses RAISE Specification Language

(RSL) [1] for the description of domains and concentrates

on the formalization of as many domain facts as possible.

Our objective is slightly different. Although we aim toward

the enrichment of the transportation domain model, our

concerns are also to check the capability of Event-B as a

domain engineering tool and to point out and address

(where possible) the issues with which we are confronted

during this exercise. In the following paragraphs, we

present a brief comparison of Event-B with Rigorous

Approach to Industrial Software Engineering (RAISE)

[21]:

Just as original B evolved into Event-B, RAISE is

considered as an extended version of Vienna Development

Method (VDM) [24]. It is based on enhanced features of

several formal techniques, such as model oriented features

of VDM, algebraic features of OBJ [18], concurrency

features of CSP, modularity features of Meta Language

(ML) [39], and real time.

The algebra-theoretical nature of most of its constructs

is the basis of its structuring mechanisms. Its states are

specified via types and predicates, like other formal

methods, but a change in state can be specified in several

ways, such as imperative, axiomatic, and algebraic nota-

tions. Event-B, on the other hand, is based on events which

are controlled via guards. State transitions are defined via

generalized substitutions. These guards and substitutions

are similar to the concept of pre and postconditions.

Event-B enjoys a much more liberal refinement mech-

anism compared to RAISE. In RAISE, a refinement must

have a signature that includes the signature of the abstract

model. It is a tight 1-1 relationship. Event-B, on the other

hand, relaxes this strict 1-1 relationship such that its syntax

allows abstraction to be refined in more than one way. An

abstract event can be refined by several events within the

same refining machine. See Sect. 3.1 for a detailed dis-

cussion on the refinement mechanism of Event-B.

RAISE achieves the notion of correctness of refinement

through a standard principle of refinement consistency, i.e.,

at any time, if an abstract operation is available, any

refinement of it must also be available (enabledness

preservation). Event-B adds the idea of nondivergence to it.

So, in Event-B, a refinement is correct if it is enabledness

preserving as well as nondivergent.

In RAISE, it is theoretically possible to express and

prove the liveness of each machine separately, but authors

like [16, 20] have reported different experiences. Erasmy

et al. [16] failed to prove the liveness of the system

because the justification editor lacked rules for the parallel

combinator, i.e., (exp1kexp2) and its interaction with other

combinators like sequential combinator, i.e., (exp1; exp2),

rules for hiding schemes (schemes that hide some of the

declarations inside), etc. According to [20], apart from

applicative style, the concurrent style in RSL cannot be

used to specify pure progress properties, e.g., fairness,

which is one of the liveness properties. The poor ability of

Event-B to describe temporal properties is discussed in

detail in Sect. 5.6.

The tools supporting both RSL language and the RAISE

method have been commercially available since 1991.

These tools revolve around the activities of writing speci-

fications, type checking, performing justifications, transla-

tions of specifications into imperative languages like C??,

Ada, etc., and documentation. Plugins for translations into

Standard ML (SML) [36] and Prototype Verification Sys-

tem (PVS) [37], and generation of RSL from UML class

diagrams are also available. Although, RAISE is some-

times criticized for its incomplete set of rules for the jus-

tification editor, such as absence of rules for the parallel

combinator, interaction of channel hiding, and the parallel

combinator, yet overall its toolset is easy to use, uniform,

and relatively fast.

Extensive tool support for Event-B is one of its powerful

aspects. Event-B is supported by the platform Rodin which

helps specification writing and proving. The Atelier-B [14]

provers provide additional automated proof facilities to the

existing Rodin provers. Animators like ProB, AnimB, and

Brama make possible the execution of specifications for

their validation. The UML-B plugin [44] allows users to

translate UML models into Event-B specifications for

verification and validation. The B2Latex plugin allows the

printing of Event-B specifications into latex for documen-

tation purposes. We can also run B models into the Rodin

platform with the help of the B2Rodin plugin. There are

also plugins for model decomposition, recomposition, and

code generation.

7.2 Event-B and goal models

A formal domain model should prove to be useful at the

time when the system requirements are being specified. It

can be used either as an inspirational source for the spec-

ification or as a testbed to check the compatibility of the

requirements with the domain. However, current best
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practices would recommend the use of a goal oriented

requirement engineering methodology to elicit require-

ments. Knowledge Acquisition in autOmated Specification

(KAOS) [27] is a good candidate for this activity. Apart

from its ability to state goals, their decompositions and

their relationships, KAOS allows requirements engineers to

express temporal properties by real-time Linear Temporal

Logic (LTL) formulae. This complements the weakness of

Event-B is this area.

The relationship between KAOS and Event-B is an

active research field. In [4, 7], a syntactic extension and

patterns to model the notion of obligation introduced by

the temporal model into Event-B are proposed. In [34,

35], a simpler approach is explored. Both approaches

rely on systematic transformation rules to derive an

Event-B model from the KAOS model. They are con-

sistent with the idea of a gradual introduction of for-

malism during the specification process. They provide us

with a tool to study the relationship between Event-B

formal domain models and requirements which are not

yet fully clarified.

7.3 Event-B in the transportation domain

Previously, Event-B has been employed for the develop-

ment of transportation systems, see for instance [11, 17,

38]. But most of the time the role of this language was

limited to system modeling of a particular problem. Our

work is different in the sense that we are modeling the

domain, where such systems are assumed to operate. The

specifications of these aforementioned railway systems do

contribute toward the completion of the land transport

domain model, but as a part of the whole. Our model is

more general and could be used for different kinds of

transportation systems, such as road, railways, and

conveyors.

7.4 Event-B in the community

There has been some self-reflection within the Event-B

community regarding some of the issues raised in this

paper. For instance, the elegant expression of explicit

timing properties or LTL expressions in Event-B is known

to be a challenging task. The expression of these properties,

a key element for utilization of formal methods in the

automotive sector, is currently nonstandard in Event-B.

Therefore, the correctness of the specifications which

incorporate such expressions cannot be proved in Rodin

alone.

Joochim et al. [25], like Cansell et al. [13], propose a

timing pattern which uses global time and also interacts

with a number of active times. This pattern formalizes the

timing diagram of UML rather than considering timing

properties in general. In addition, its usage is recommended

at abstract stages rather than in later refinements.

In another work [6], the authors propose an extension of

Event-B to incorporate three LTL operators: next, eventu-

ally, and bounded eventually. In this work, standard Event-

B structures, WHEN, THEN, and END are modified to

represent these three LTL operators. Such models deviate

from the standard Event-B notations and their verification

and validation become a major challenge.

8 Conclusion

We find Event-B an adequate language for domain engi-

neering; however, there are still some important questions

to address. They are about the language, the tools, and the

use of domain models in requirements engineering.

About the language, the most limiting factor is the lack

of expression of temporal or ordering constraints. We

cannot straightforwardly state, and of course prove, prop-

erties such as liveness, deadlock freeness, fairness, and so

on. Our domain exhibits many natural ‘‘protocols’’ and

constraints; we do not think it is exceptional in this respect.

Whether Event-B can be extended in this direction, or

whether approaches based on mixing formalisms, such as

CSP||Event-B [41] or event refinement diagrams [12] can

be made practical is still an open issue. Answers are

beginning to appear. We just hope they can be used soon.

Tools are essential to formal methods. Without Rodin,

the provers, and Brama, there is no way we could have

reached the current state of the specification. However,

they are still crude for an industrial usage. The tool we

lacked the most was inspired by our needs with respect to

animation. Application of the transformational heuristics

requires some insight and intelligence (choice of the rule,

check of the validity), but also tedious and boring work

(text modification). We plan to implement the second part

in the form of a plugin for Rodin. The boring parts of the

transformation do not contain overly complex text

manipulation.

We would also appreciate to see tools evolving in the

direction of richer visualization of the specifications. Our

notes about observation levels, flat linear structures, par-

allel refinement, or composition of refinement can be seen

through this light. We do not call for incorporating these

into the language: it would be unwise to break something

that works quite well! Instead, we think that tools based on

a better understanding of the needs of the specifiers would

be a more promising approach. There is clearly a need for

research in this direction.

As we argued, knowledge of the particular domain

before prescription of requirements is a valuable asset. We

have hinted at ideas, such as deriving invariants of a system
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from the properties expressed in the domain model. We

now want to test this by studying the practical relationship

of our domain model with a separate specification, written

also in Event-B, of a platooning system [28]. In particular,

we would like to study how we can immerse the specifi-

cation of a particular system into the domain model.
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